ON THE TERNARY BI-QUADRATIC DIOPHANTINE EQUATION

$3\left(X^{2}+Y^{2}\right)-5 X Y=36 Z^{4}$

K. Meena*
 S.Vidhyalakshmi**
 S.Priya***
 M.A.Gopalan**

Abstract

:

The ternary biquadratic non-homogeneous equation represent by the Diophantine equation $\mathbf{3}\left(X^{\mathbf{2}}+\boldsymbol{Y}^{\mathbf{2}}\right)-\mathbf{5} X \boldsymbol{Y}=\mathbf{3 6} Z^{4}$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special numbers are exhibited.

KEYWORDS:

Integral solutions, ternary biquadratic non-homogeneous equation, lattice points.
MSC 2010 mathematics subject classification:11D25

[^0]
INTRODUCTION:

The biquadratic Diophantine (homogeneous or non-homogeneous) equations offer an unlimited field for research due to their variety [1-3].In particular, one may refer [4-15] for ternary non-homogeneous bi-quadratic equations. This communication concerns with yet another interesting ternary non-homogeneous biquadratic equation given by $\mathbf{3}\left(X^{2}+Y^{2}\right)-\mathbf{5} X \boldsymbol{Y}=\mathbf{3 6 Z}{ }^{4}$ for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

NOTATIONS:

* $\boldsymbol{T}_{\boldsymbol{m}, n}$: Polygonal number of rank n with size m .
* $\boldsymbol{C P}_{30, n}$: Centered Triacontagonal Pyramidal number of rank 30.
* $\boldsymbol{C P}_{28, n}$: Centered Icosioctagonal Pyramidal number of rank 28.
* $C P_{24, n}$: Centered Icositeragonal Pyramidal number of rank 24.
* $\boldsymbol{C P}_{20, n}$
:Centered Icosogonal Pyramidal number of rank 20.
* $\boldsymbol{C} \boldsymbol{P}_{\mathbf{1 8}, n}$:Centered Octadecagonal Pyramidal number of rank 18.
* $\boldsymbol{C P}_{\mathbf{1 0 , n}}$:Centered Decagonal Pyramidal number of rank 10.
* $\boldsymbol{C P}_{6, n}$:Centered Hexagonal Pyramidal number of rank 6.
* $\boldsymbol{F}_{4, n, 3}$: Four dimensional figurate number of rank 3.
- $\boldsymbol{F}_{4, n, 4}$: Four dimensional figurate number of rank 4.

METHOD OF ANALYSIS:

The ternary biquadratic equation to be solved for its non-zero integer solution is,

$$
\begin{equation*}
3\left(X^{2}+Y^{2}\right)-5 X Y=36 Z^{4} \tag{1}
\end{equation*}
$$

Let $\quad x=u+v, y=u-v, u \neq v \neq 0$

Substituting (4) in (1) and simplifying, we get
$u^{2}+11 v^{2}=36 z^{4}$

We present below different methods of solving (3) and thus obtained different patterns of solution to (1).

PATTERN: 1

$$
\begin{equation*}
\text { Assume, } z(a, b)=a^{2}+11 b^{2} \tag{4}
\end{equation*}
$$

Write 36 as

$$
\begin{equation*}
36=(5+i \sqrt{11})(5-i \sqrt{11} \tag{5}
\end{equation*}
$$

Substituting (4) and (5) in (3) and employing the method of factorization, define

$$
(u+i \sqrt{11} v)=(5+i \sqrt{11})(a+i \sqrt{11} b)^{4}
$$

Equating real and imaginary parts, weget

$$
\begin{align*}
& u=5 a^{4}+605 b^{4}-330 a^{2} b^{2}-44 a^{3} b+484 a b^{3} \\
& v=a^{4}+121 b^{4}-66 a^{2} b^{2}+20 a^{3} b-220 a b^{3} \tag{6}
\end{align*}
$$

Using (6) in (2) wehave,

$$
\left.\begin{array}{l}
x=6 a^{4}+726 b^{4}-396 a^{2} b^{2}-24 a^{3} b+264 a b^{3} \\
y=4 a^{4}+484 b^{4}-264 a^{2} b^{2}-64 a^{3} b+704 a b^{3} \tag{7}
\end{array}\right\}
$$

Thus (7) and (4) represent the non-zero distinct integral solutions of (1).

PROPERTIES:

$$
\begin{aligned}
& >144 F_{4, a, 3}-x(a, 1)-6 C P_{30, a}-30 C P_{6, a}-T_{926, a} \equiv 1(\bmod 2) \\
& >96 F_{4, a, 3}-y(a, 1)-6 C P_{28, a}-60 C P_{6, a}-T_{618, a} \equiv 1(\bmod 4) \\
& >17424 F_{4, b, 3}-x(b, 1)-6 C P_{30, b}-4062 C P_{6, a}-T_{16766, b} \equiv 2(\bmod 3) \\
& >y(a, 1)+6 C P_{30, a}+24 F_{4, a, 4}-x(a, 1)-T_{298, a} \equiv 1(\bmod 2)
\end{aligned}
$$

PATTERN: 2

Equation (3) can be written as,

$$
\begin{equation*}
u^{2}-25 z^{4}=11\left(z^{4}-v^{2}\right) \tag{8}
\end{equation*}
$$

Equation (8) is rewritten in the form of ratio as,

$$
\frac{u+5 z^{2}}{z^{2}+v}=\frac{11\left(z^{2}-v\right)}{u-5 z^{2}}=\frac{A}{B}, B \neq 0
$$

Which is equivalent to the following two equations,

$$
\left.\begin{array}{l}
B u-A v+z^{2}(5 B-A)=0 \tag{9}\\
A u+11 B v+z^{2}(-5 A-11 B)=0
\end{array}\right\}
$$

Employing the method of cross multiplication to solve the system of (9), weget

$$
\begin{align*}
& u=5 A^{2}-55 B^{2}+22 A B \\
& v=-A^{2}+11 B^{2}+10 A B \tag{10}
\end{align*}
$$

Taking $A=p^{2}-11 q^{2}, B=2 p q$ in (10) and (9) weget,

$$
\begin{align*}
& u=5 p^{4}+605 q^{4}-330 p^{2} q^{2}+44 p^{3} q-484 p q^{3} \\
& v=p^{4}+121 q^{4}-66 p^{2} q^{2}-20 p^{3} q+220 p q^{3} \tag{12}\\
& z=p^{2}+11 q^{2} \tag{13}
\end{align*}
$$

Using the values of u and v from (12) in (2) we've,

$$
\left.\begin{array}{l}
x=6 p^{4}+726 q^{4}-396 p^{2} q^{2}+24 p^{3} q-264 p q^{3} \tag{14}\\
y=4 p^{4}+484 q^{4}-264 p^{2} q^{2}+64 p^{3} q-704 p q^{3}
\end{array}\right\}
$$

Thus (13) and (14) represent the non-zero integral solutions of (1).

PROPERTIES:

$>96 F_{4, p, 3}+6 C P_{30, p}-y(p, 1)+6 C P_{30, p}-T_{618, p} \equiv 3(\bmod 4)$

$$
\begin{aligned}
& >144 F_{4, p, 3}-x(p, 2)+12 C P_{6, p}-T_{3302, p} \equiv 5(\bmod 6) \\
& >6 C P_{3, p}+6 C P_{20, p}-24 F_{4, p, 4}-y(p, 1)+x(p, 1)+T_{298, p} \equiv 1(\bmod 2) \\
& >11616 F_{4, q, 3}-6 C P_{30, q}-y(2, q)-4282 C P_{6, q}-T_{12762, q} \equiv 4(\bmod 8)
\end{aligned}
$$

PATTERN: 3

Equation (8) is also written in the form of ratio as,

$$
\frac{u+5 z^{2}}{11\left(z^{2}+v\right)}=\frac{z^{2}-v}{u-5 z^{2}}=\frac{A}{B}, B \neq 0
$$

Which is equivalent to the following two equations,

$$
\left.\begin{array}{l}
B u-11 A v+z^{2}(5 B-11 A)=0 \\
A u+B v-z^{2}(5 A+B)=0 \tag{15}
\end{array}\right\}
$$

Employing the method of cross multiplication to solve the system of (15), weget

$$
\begin{align*}
& u=55 A^{2}-5 B^{2}+22 A B \\
& v=11 A^{2}-B^{2}-10 A B \tag{16}\\
& z^{2}=11 A^{2}+B^{2} \tag{17}
\end{align*}
$$

Taking $\quad A=2 p q, B=11 p^{2}-q^{2}$ in (17) and (16) weget,

$$
\begin{align*}
& u=605 p^{4}+5 q^{4}-330 p^{2} q^{2}-484 p^{3} q+44 p q^{3} \\
& v=121 p^{4}+q^{4}-66 p^{2} q^{2}+220 p^{3} q-20 p q^{3} \tag{18}\\
& z=11 p^{2}+q^{2} \tag{19}
\end{align*}
$$

Using the values of u and v from (18) in (2) we've,

$$
\left.\begin{array}{l}
x=726 p^{4}+6 q^{4}-396 p^{2} q^{2}-264 p^{3} q+24 p q^{3} \\
y=484 p^{4}+4 q^{4}-264 p^{2} q^{2}-704 p^{3} q+64 p q^{3} \tag{20}
\end{array}\right\}
$$

Thus (19) and (20) represent the non-zero integral solutions of (1).

PROPERTIES:

$$
\begin{aligned}
& >6 C P_{24, q}+144 F_{4, q, 3}-x(1, q)-T_{794, q} \equiv 2(\bmod 3) \\
& >96 F_{4, q, 3}-y(1, q)+6 C P_{3 o, q}+6 C P_{24, q}+3 C P_{10, q}-T_{530, q} \equiv 1(\bmod 2) \\
& >240 F_{4, q, 3}-x(1, q)-y(1, q)+6 C P_{30, q}+58 C P_{6, q}-T_{1322, q} \equiv 3(\bmod 5) \\
& >144 F_{4, q, 3}-x(2, q)+6 C P_{30, q}+6 C P_{18, q}-T_{3170, q} \equiv 5(\bmod 6)
\end{aligned}
$$

CONCLUSION:

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES:

[1] L.E. Dickson, History of theory of numbers, Vol.3, Chelsea publishing company, New York, 1952
[2] R.D Carmichael, The theory of numbers and Diophantine Analysis, Dover Publications Inc., New York, Dover 1959.
[3]Albert H.Beiler, Recreations in the theory of numbers, Dover Publications Inc., New York, 1963
[4] M.A. Gopalan and G.Janaki, Observation on $2\left(X^{2}-Y^{2}\right)+4 X Y=Z^{4}$, Acta Ciencia Indica, Vol.XXXVM (No.2), pg.445-448, 2009.
[5] M.A. Gopalan and G.Sangeetha, Integral solutions of ternary biquadratic $\left(X^{2}-Y^{2}\right)+2 X Y=z^{4}$, Antarctica J. Math., 7(1),pg.95-101, 2010.
[6] M.A. Gopalan and G.Janaki, Observation on $3\left(X^{2}-Y^{2}\right)+9 X Y=z^{4}$, Antarctica J.Math., 7(2) pg.239-245,2010.
[7] M.A. Gopalan and A.Vijayasankar, Integral solutions of ternary biquadratic equation $X^{2}+3 Y^{2}=Z^{4}$, Impact. J.Sci.Tech, Vol. 4 (No.3), pg.47-51, 2010.
[8] M.A. Gopalan and G.sangeetha, Integral solutions of ternary non-homogeneous biquadratic $X^{4}+X^{2}+Y^{2}-Y=z^{2}+Z$,Acta Ciencia Indica, Vol XXXV11M No.4, 799-803, 2011.
[9] M.A. Gopalan , S.Vidhyalakshmi, G.Sumathi, On the ternary biquadratic non-homogeneous equation $(2 K+1)\left(X^{2}+Y^{2}+X Y\right)=z^{4}$, Indian Journal Of Engineering, Vol 1, No 1, Nov 2012, 37-40.
[10] M.A. Gopalan, S.Vidhyalakshmi, G.Sumathi, Integral Solutions of ternary biquadratic equation $(\alpha+1)\left(X^{2}+Y^{2}\right)+(2 \alpha+1) X Y=z^{4}$, JARCE, Vol 6, No.2, 97-98, July-Dec 2012.
[11] M.A. Gopalan, G.Sumathi, S.Vidhyalakshmi, Integral solutions of ternary biquadratic nonhomogeneous equation $(K+1)\left(X^{2}+Y^{2}\right)-(2 K+1) X Y=Z^{4}$, Archimedes J.Math, 3(1), 2013, 67-71.
[12] M.A. Gopalan, S.Vidhyalakshmi, S.Mallika, Integral solutions of $2\left(X^{2}+Y^{2}\right)+3 X Y=\left(\alpha^{2}+7\right)^{n} Z^{4}$, IJMIE, Vol 3, issue 5, May 2013, 408-414.
[13] M.A. Gopalan ,V.Geetha,Integral solutions of ternary biquadratic equation $X^{2}+13 Y^{2}=z^{4}$, IJLRST, Vol 2, issue 2, 59-61, Mar-Apr 2013.
[14] M.A. Gopalan, S.Vidhyalakshmi, G.Sumathi, On the ternary biquadratic non-homogeneous $X^{2}+n Y^{3}=z^{4}$, Cayley J.Math, 2(2), 2013, 169-174.
[15] M.A. Gopalan, A.Kavitha, S.Vidhyalakshmi, Integral points on the biquadratic equation with 3 unknowns $(X+Y+Z)^{3}=Z^{2}\left(3 X Y-X^{2}-Y^{2}\right)$, IJMSEA, Vol 7, No.V1, 81-84, Nov 2013.

[^0]: * Former VC of Bharathidasan University, Trichy-620024, Tamilnadu, India.
 ** Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India.
 ${ }^{* * *}$ M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy- 620002, Tamilnadu, India.

